Internet of THings Area Coverage Analyzer (ITHACA) for Complex Topographical Scenarios
نویسندگان
چکیده
The number of connected devices is increasing worldwide. Not only in contexts like the Smart City, but also in rural areas, to provide advanced features like smart farming or smart logistics. Thus, wireless network technologies to efficiently allocate Internet of Things (IoT) and Machine to Machine (M2M) communications are necessary. Traditional cellular networks like Global System for Mobile communications (GSM) are widely used worldwide for IoT environments. Nevertheless, Low Power Wide Area Networks (LP-WAN) are becoming widespread as infrastructure for present and future IoT and M2M applications. Based also on a subscription service, the LP-WAN technology SIGFOXTM may compete with cellular networks in the M2M and IoT communications market, for instance in those projects where deploying the whole communications infrastructure is too complex or expensive. For decision makers to decide the most suitable technology for each specific application, signal coverage is within the key features. Unfortunately, besides simulated coverage maps, decision-makers do not have real coverage maps for SIGFOXTM, as they can be found for cellular networks. Thereby, we propose Internet of THings Area Coverage Analyzer (ITHACA), a signal analyzer prototype to provide automated signal coverage maps and analytics for LP-WAN. Experiments performed in the Gran Canaria Island, Spain (with both urban and complex topographic rural environments), returned a real SIGFOXTM service availability above 97% and above 11% more coverage with respect to the company-provided simulated maps. We expect that ITHACA may help decision makers to deploy the most suitable technologies for future IoT and M2M projects.
منابع مشابه
A method to increasing the Quality of Service (QoS) in Wireless body area networks by providing a MAC layer Protocol based of Internet of Things
With the development of technology, the use of wireless telecommunication networks for the various affairs is essential. These networks are one of the safest and most widely used networks, for instance, in medical care and remote patient monitoring. What matters is the quality of service in these networks. The purpose of this paper is to increase packet transduction in a wireless body area netw...
متن کاملAn Efficient Secret Sharing-based Storage System for Cloud-based Internet of Things
Internet of things (IoTs) is the newfound information architecture based on the internet that develops interactions between objects and services in a secure and reliable environment. As the availability of many smart devices rises, secure and scalable mass storage systems for aggregate data is required in IoTs applications. In this paper, we propose a new method for storing aggregate data in Io...
متن کاملNarrowband Internet of Things
Narrowband Internet of Things (NB-IoT) is a new cellular technology introduced in 3GPP Release 13 for providing wide-area coverage for the Internet of Things (IoT). This article provides an overview of the air interface of NB-IoT. It describes how NB-IoT addresses key IoT requirements such as deployment flexibility, low device complexity, long battery life time, support of massive number of dev...
متن کاملEnergy Efficient Multi Path Routing Protocol in Internet of Things
Internet of things (IoT) is a network with a wide range of smart and physical objects and gadgets that can exchange information with each other. IOT introduces a variety of services that human life is dependent on its secure and accessible activities. These networks face numerous problems in terms of energy consumption and reliable communication to send the correct data. Moreover, the character...
متن کاملPerformance of a low-power wide-area network based on LoRa technology: Doppler robustness, scalability, and coverage
The article provides an analysis and reports experimental validation of the various performance metrics of the LoRa low-power wide-area network technology. The LoRa modulation is based on chirp spread spectrum, which enables use of low-quality oscillators in the end device, and to make the synchronization faster and more reliable. Moreover, LoRa technology provides over 150 dB link budget, prov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Symmetry
دوره 9 شماره
صفحات -
تاریخ انتشار 2017